An Improved Method for Reduction of Truncation Artifact in Magnetic Resonance Imaging
نویسنده
چکیده
In Fourier magnetic resonance imaging (MRI), signals from diierent positions in space are phase-encoded by the application of a gradient before the total signal from the imaged subject is acquired. In practice, a limited number of the phase-encoded signals are often acquired in order to minimize the duration of the studies and maintain adequate signal-to-noise ratio. However, this results in incomplete sampling in spatial frequency or truncation of the k-space data. The truncated data, when Fourier transformed to reconstruct, give rise to images degraded by limited resolution and ringing near sharp edges, which is known as the truncation artifact. A variety of methods have been proposed to reconstruct images with reduced truncation artifact. In this work, we use a regularization method in the context of a Bayesian framework. Unlike the approaches that operate on the raw data, the regularization approach is applied directly to the reconstructed image. In this framework, the two dimensional image is modeled as a random eld whose posterior probability conditioned on the observed image is represented by the product of the likelihood of the observed data with the prior based on the local spatial structure of the underlying image. Since the truncation artifact appears in only one of the two spatial directions, the use of conventional piecewise-constant constraints may degrade soft edge regions in the other direction that are less aaected by the truncation artifact. Here, we consider more elaborate forms of constraints than the conventional piecewise-smoothness constraints, which can capture actual spatial information about the MR images. In order to reduce the computational cost for optimizing non-convex objective functions, we use a deterministic annealing method. Our experimental results indicate that the proposed method not only reduces the truncation artifact, but also improves tissue regularity and boundary deenition without degrading soft edge regions.
منابع مشابه
The truncation artifact in a skinny patient following myocardial perfusion SPECT
Myocardial perfusion SPECT is one of the most common imaging techniques performed in nuclear medicine departments. To avoid misleading interpretation, it is necessary to address the quality control and technical problems. The truncation artifact occurs when the patient size is large relative to the field of view of the camera, causing false perfusion defects in the LV myocardium, misinterpreted...
متن کاملArtifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality
Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...
متن کاملApplication of Magnetic Resonance Imaging (MRI) as a safe & Application of Magnetic Resonance Imaging (MRI) as a safe & non-destructive method for monitoring of fruit & vegetable in postharvest period
To investigate and control quality, one must be able to measure quality-related attributes. Quality of produce encompasses sensory attributes, nutritive values, chemical constituents, mechanical properties, functional properties and defects. MRI has great potential for evaluating the quality of fruits and vegetables. The equipment now available is not feasible for routine quality testing. The ...
متن کاملAccelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملSegmentation of Magnetic Resonance Brain Imaging Based on Graph Theory
Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...
متن کامل